Modelling of Red Blood Cell Motion and Deformation Using Particle Based Method

نویسندگان

  • Takami Yamaguchi
  • Yohsuke Imai
  • Takuji Ishikawa
چکیده

We have developed a numerical method for simulating micro-scale blood flow. We have applied this meth od to model blood flow in malaria infection. Our model well simulated the stretching of malaria-infected red blood cells (Pf-IRBCs), the deformation of Pf-IRBCs in shear flow, and the flow into narrow channels. We have also investigated the margination of Pf-IRBCs in microcirculation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of the Dynamics of an immersed body in a microchannel with stenosis using the immersed boundary method

In the present study, the combination of lattice Boltzmann and immersed boundary methods is used to simulate the motion and deformation of a flexible body. Deformation of the body is studied in microchannel with stenosis and the effect of the flexibility changes on its deformation is investigated. The obtained results in the present manuscript show that by increasing the elasticity modulus, the...

متن کامل

Dielectrophoretic effect of nonuniform electric fields on the protoplast cell

In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, micro‌organisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...

متن کامل

Simulation of a single red blood cell flowing through a microvessel stenosis using dissipative particle dynamics.

The motion and deformation of a single red blood cell flowing through a microvessel stenosis was investigated employing dissipative particle dynamics (DPD) method. The numerical model considers plasma, cytoplasm, the RBC membrane and the microvessel walls, in which a three dimensional coarse-grained spring RBC. The suspending plasma was modelled as an incompressible Newtonian fluid and the vess...

متن کامل

A particle-based model for the transport of erythrocytes in capillaries

This paper presents a two-dimensional particle-based model for the red blood cell, and uses it to compute cell deformation in simple shear and pressure-driven flows. The cell membrane is replaced by a set of discrete particles connected by nonlinear springs; the spring law enforces conservation of the membrane area to a high accuracy. In addition, a linear bending elasticity is implemented usin...

متن کامل

SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries

BACKGROUND Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011